Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(21): 18743-18750, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273586

RESUMEN

Surface modification of inorganic nanoparticles is critical for the quality and performance of pigments, cosmetics, and composite materials. We covered the titanium dioxide nanoparticles' surface with 2-(acetoacetoxy) ethyl methacrylate, a polymerizable chelating agent. Through the in situ polymerization procedure, this molecule's ß-ketoester moiety quickly coordinated with the metal atoms on titanium dioxide nanoparticles, and its methacrylate group formed homogeneous coating layers. This coating layer significantly reduced the photocatalytic activity of titanium dioxide nanoparticles and prevented their aggregation. This nanoparticle dispersion showed low viscosity up to the solid content of 60% (w/w) in the liquid dispersant. As a result, it increased the UV screening performance and dispersion stability. Additionally, this coating layer widened the absorption spectrum of titanium dioxide and could change the color of nanoparticles from pale yellow to brown. It can also be helpful for cosmetic applications.

2.
Discov Nano ; 18(1): 47, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-37382702

RESUMEN

A high-performance gas sensor operating at room temperature is always favourable since it simplifies the device fabrication and lowers the operating power by eliminating a heater. Herein, we fabricated the ammonia (NH3) gas sensor by using Au nanoparticle-decorated TiO2 nanosheets, which were synthesized via two distinct processes: (1) preparation of monolayer TiO2 nanosheets through flux growth and a subsequent chemical exfoliation and (2) decoration of Au nanoparticles on the TiO2 nanosheets via hydrothermal method. Based on the morphological, compositional, crystallographic, and surface characteristics of this low-dimensional nano-heterostructured material, its temperature- and concentration-dependent NH3 gas-sensing properties were investigated. A high response of ~ 2.8 was obtained at room temperature under 20 ppm NH3 gas concentration by decorating Au nanoparticles onto the surface of TiO2 nanosheets, which generated oxygen defects and induced spillover effect as well.

3.
Nat Prod Res ; 35(22): 4380-4387, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31960706

RESUMEN

A new isocoumarin (1) named fraxicoumarin was isolated from the bark of Fraxinus chinensis subsp. rhynchophylla along with three known compounds (2-4). The structure of the new compound was established by extensive spectroscopic studies and chemical evidence. The anti-inflammatory effects of the isolated compounds (1-4) on lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells were evaluated in vitro. Of the compounds tested, compounds 1 and 3 inhibited LPS-induced nitric oxide (NO) production in RAW 264.7 cells. Consistent with these findings, they also suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level in RAW 264.7 cells.


Asunto(s)
Fraxinus , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Isocumarinas/farmacología , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Corteza de la Planta
4.
J Microbiol Biotechnol ; 30(8): 1214-1221, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32699201

RESUMEN

Esculetin 6-O-ß-D-arabinofuranosyl-(1→6)-ß-D-glucopyranoside (EAG) is a coumarin glycoside isolated from the stem bark of Fraxinus rhynchophylla. This study scrutinized the anti-proliferative activity of EAG on blood cancer-derived Jurkat leukemic cells. Cell viability assays in leukemic cancer cells determined that EAG possesses potent anti-proliferative effects. Moreover, treatment with EAG increased the proportion of apoptotic cells, resulted in cell cycle arrest being induced at the subG0/ G1 phase, and reduced the proportion of cells present in the S phase. In addition, mitochondrial membrane potential was reduced by EAG in Jurkat cells. Additionally, EAG triggered apoptosis that was mediated by the downregulation of BCL-XL, p-IκBα, and p-p65 expressions in addition to the upregulation of cleaved Caspase 3 and BAX expressions. These findings revealed that the toxic effect of EAG was mediated by intracellular signal transduction pathways that involved a mechanism in which reactive oxygen species (ROS) were upregulated. Thus, this study concludes that EAG could potentially serve as a therapeutic agent for leukemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cumarinas/farmacología , Fraxinus/química , Corteza de la Planta/química , Extractos Vegetales/farmacología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Humanos , Células Jurkat , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...